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Abstract. We introduce the commands twexp and twgravity that implement the
estimators developed in Jochmans (2017) for exponential regression models with
two-way fixed effects. twexp is applicable to generic n×m panel data. twgravity is
written for the special case where the data is a cross-section on dyadic interactions
between n agents. A prime example of the latter is cross-sectional bilateral trade
data, where the model of interest is a gravity equation with importer and exporter
effects. Both twexp and twgravity can deal with data where n and m are large,
that is, the case of many fixed effects. They make use of Mata and are very fast to
execute.
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1 Introduction

The exponential-regression model finds wide application in the analysis of non-negative

outcomes such as count data. It has also shown itself to be an attractive alternative to

the log-linearized regression model. Indeed, following Santos Silva and Tenreyro (2006),

constant-elasticity models are now routinely estimated from data in levels rather than

logarithms. This paper presents two Stata routines to estimate exponential regressions

with two-way fixed effects.

We consider double-indexed data on a non-negative outcome, yij , and a p-vector of

regressors, xij . The routine twexp is designed to estimate the slope vector γ in the

n×m panel model

yij = e(αi + βj + x>ijγ) εij , E(εij |x11, . . . ,xnm) = 1, (1)

where i = 1, . . . n and j = 1, . . . ,m and we let e(a) := exp(a). Here, αi and βj are fixed

effects and εij is a latent disturbance. A slight variation to this is a cross-sectional data

set in which we observe outcomes and regressors for the n×(n−1) pairwise interactions

between agent i = 1, . . . n and j 6= i. This is different from the panel-data case as,
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here, we do not observe yii and xii. The routine twgravity is designed to handle this

case. Its name is derived from the leading example of such an application being the

estimation of a gravity equation from a cross-section of bilateral trade flows. Here, the

outcome is the directed trade flow from i to j, the regressors are measures of distance

or (dis-)similarity between i and j, and αi and βj are exporter and importer effects,

respectively.

The most popular estimator of (1) is the pseudo maximum-likelihood estimator

(PMLE) that arises from treating the yij as conditionally-independent Poisson variates.

If we introduce the shorthand

uij(αi, βj ,γ) := yij − e(αi + βj + x>ijγ),

the PMLE solves the p first-order conditions for γ,

n∑
i=1

m∑
j=1

xij uij(αi, βj ,γ) = 0,

jointly with the n+m first-order conditions for the effects α1, . . . , αn and β1, . . . , βm,

m∑
j=1

uij(αi, βj ,γ) = 0, i = 1, . . . , n,

n∑
i=1

uij(αi, βj ,γ) = 0, j = 1, . . . ,m,

subject to a suitable normalization on the fixed effects, such as
∑n

i=1 αi =
∑m

j=1 βj ,

for example. In spite of the presence of the growing number of nuisance parameters

the estimator of γ is consistent and has a correctly-centered limit distribution when

either n is large and m is small or when both n and m are large (and of a similar

magnitude). Details on the theoretical properties are available in Wooldridge (1999)

and Fernández-Val and Weidner (2016).

The pseudo-Poisson approach suffers from two drawbacks. The first is a numerical

one. Indeed, the large amount of fixed effects implies that a simple approach that

combines, say, poisson with n + m dummy variables will be infeasible in many data

sets. The routines poi2hdfe (Guimarães 2016) or ppmlhdfe (Correia et al. 2019) are

designed especially to deal with this problem and are useful alternatives here. The

second drawback is that the plug-in estimator of the covariance matrix of the above

moment conditions is severly biased. The origin of the problem is again the estimation of

the incidental parameters. Indeed, calculating the covariance matrix requires estimating

terms involving

uij(αi, βj ,γ)2
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which requires estimates of the fixed effects. The latter are both numerous and estimated

with low precision, creating an incidental-parameter bias in the estimated covariance

matrix. The bias can be severe, as evidenced by the simulation results in Egger and

Staub (2016), Jochmans (2017), and Pfaffermayer (2019). The practical implication of

this is that the standard errors will often not be an accurate reflection of the statistical

precision of the parameter estimates. Often they will be too small. Consequently,

reported confidence interval will be too narrow and test procedures will overreject under

the null.

Equation (1) is an important member of the class of multiplicative-error models.

For such models moment conditions have been derived that are free of fixed effects

(Charbonneau 2013, Jochmans 2017). They allow inference on γ to be separated from

estimation of α1, . . . , αn and β1, . . . , βm. twexp and twgravity implement estimators

based on these moments. Both routines are designed to be computationally efficient

and are very fast to implement. Hence, our routines should be a useful addition to the

toolbox of empirical researchers working with count data and trade data. Furthermore,

as the whole problem is free of nuisance parameters the standard errors do not suffer

from an incidental-parameter bias.

2 Moment conditions and estimators

Consider (1) under the assumption that the errors are mutually independent. Then,

using that

E

(
yij

e(x>ijγ)

∣∣∣∣∣x11, . . . ,xnm

)
= e(αi + βj)

for all (i, j), we have

E

(
yij

e(x>ijγ)

yi′j′

e(x>i′j′γ)
− yij′

e(x>ij′γ)

yi′j
e(x>i′jγ)

∣∣∣∣∣x11, . . . ,xnm

)
= 0 (2)

for all i, i′ and j, j′. This (conditional) moment condition for γ is free of incidental

parameters. Equation (2) implies unconditional moment conditions that can form the

basis of a method-of-moment (MM) estimator of γ. Our Stata routines implement two

of these estimators.

The first estimator, which we dub GMM1 below, uses the levels of the covariates,
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xij as instruments. It is the solution to

s1(γ) :=

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij

{
yij

e(x>ijγ)

yi′j′

e(x>i′j′γ)
− yij′

e(x>ij′γ)

yi′j
e(x>i′jγ)

}
= 0.

This is a system of p equations and is, therefore, just identified.1 Consequently, the

estimator is

γ̂1 := arg min
γ
s1(γ)>s1(γ).

Under suitable regularity conditions γ̂1 is consistent and asymptotically normal. Its

asymptotic variance has a sandwich form and can be estimated as Q−11 V 1Q
−>
1 , where

Q1 := −
n∑

i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij

{
yijyi′j′(xij + xi′j′)

>

e(x>ij γ̂1)e(x>i′j′ γ̂1)
− yij′yi′j(xi′j + xij′)

>

e(x>ij′ γ̂1)e(x>i′j γ̂1)

}
,

is the Jacobian of the empirical moments evaluated at the point estimator and the

variance of the moments is estimated by

V 1 :=

n∑
i=1

n∑
j=1

vijv
>
ij ,

where we define the p-vector vij as

4
∑
i′ 6=i

∑
j′ 6=j

{(xij − xij′)−(xi′j − xi′j′)}

{
yij

e(x>i′j γ̂1)

yi′j′

e(x>ij′ γ̂1)
− yij′

e(x>ij γ̂1)

yi′j
e(x>i′j′ γ̂1)

}
.

The use of V 1 is needed to handle the fact that each observation appears in many of

the summands that make up s1(γ).

The second estimator we implement, GMM2, is

γ̂2 := arg min
γ
s2(γ)>s2(γ),

which is of the same form as γ̂1 but solves the empirical moment equations

s2(γ) :=

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij

{
yij

e(−x>i′jγ)

yi′j′

e(−x>ij′γ)
− yij′

e(−x>ijγ)

yi′j
e(−x>i′j′γ)

}
= 0.

1. As written here the moment equations of GMM1 can be set arbitrarily close to zero when the
regressors are all non-negative by setting one of the elements of γ arbitrarily large. This can be
resolved by transforming all regressors into deviations from their overall mean. Doing so does
not alter the roots of the original estimating equation. Both of our Stata routines perform this
normalization by default.
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The large-sample behavior of this estimator parallels that of γ̂1. The matrices Q2 and

V 2 needed to estimate the variance of the limit distribution are readily obtained. We

omit further details here for brevity. There is an array of other possible estimators

that can be derived from the conditional moment conditions above. Motivations for the

estimators considered here are given in the supplementary material to Jochmans (2017).

The choice between the two estimators depends on the application at hand. The

simulation results in Jochmans (2017) show that GMM2 tends to be more efficient than

GMM1 in designs where the conditional variance increases with the conditional mean

while GMM1 is relatively more precise in the other situations. In extensive numerical

work we have found that GMM1 is extremely stable, making it very reliable. When the

linear index x>ijγ can take on very large values the objective function of GMM2 can have

multiple local maxima and regions over which it is fairly flat. This can be understood

by noting that s2(γ) can be obtained from s1(γ) by multiplying through the latter’s

summand with e((xij +xi′j′ +xi′j +xij′)
>γ). This complicates numerical optimization

using gradient-based methods such as the Newton algorithm that we use. Our code

checks whether a global optimum has been reached by verifying whether the empirical

moments are (up to tolerance) equal to zero at the solution and gives a warning if not.

If this happens we suggest to experiment with different starting values or to switch to

GMM1 in stead.

The large number of terms in s1(γ) and s2(γ) may suggest that evaluation of the

objective function is time consuming, making estimation and inference based on them

infeasible in large data sets (see, for example, the discussion in Egger and Staub 2016).

This is not the case. Careful inspection and subsequent re-arrangement of terms reveals

that evaluation of these equations is immediate in any matrix-based language (here,

Mata). Additional details on this are provided in the appendix. The same is true for the

Jacobian matrices Q1 and Q2 as well as for the variance estimators V 1 and V 2. twexp

and twgravity are written for balanced data sets. The implementation of our efficient

computations would require adjustment to deal with gaps in the data. The exact form

of the adjustment depends on the pattern of missingness of the data and is, therefore,

not easily programmed in a generic manner. We note that merely dropping observations

for which information is missing is not sufficient. This is because of the structure of the

empirical moments, where each summand depends on quadruples of observations. One

may, of course, decide to resort to brute-force evaluation of the criterion in such cases.
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3 Stata commands

3.1 Command: twexp

The command twexp is designed for (balanced) n×m panel data sets.

Syntax

twexp has the following syntax:

twexp depvar
[
indepvars

]
, indn(varname) indm(varname) model(option) init(vec)

Here,

indn(varname) declares the cross-sectional dimension of the panel.

indm(varname) declares the time-series dimension of the panel.

model(option) determines whether GMM1 or GMM2 is implemented.

init(vec) specifies the starting value for the numerical optimization; the default is the

zero vector.

A table in standard layout reports point estimates, standard errors, z-statistics and

p-values for the null that the coefficient in question is equal to zero, and 95% confidence

intervals for each of the coefficients. The vector of point estimates and their estimated

covariance matrix can be recovered by typing matrix list e(b) and matrix list

e(V), respectively.

3.2 Command: twgravity

The command twgravity is designed for a cross-section on dyadic interactions between

n agents. Agents do not interact with themselves, so yii and xii are not defined. This is

like a panel model with m = n−1. In the vectors and matrices defined in Section 2 this

only requires modifying the range over which the sums go. To evaluate the criterion

function efficiently, however, additional intervention is needed (see the discussion on

gaps in the previous section). Therefore, a different Stata command is provided to deal

with this case.

Syntax
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twgravity has the same syntax as twexp:

twgravity depvar
[
indepvars

]
, indn(varname) indm(varname) model(option)

init(vec)

Here, again,

indn(varname) identifies the first agent in the dyad.

indm(varname) identifies the second agent in the dyad.

model(option) determines whether GMM1 or GMM2 is implemented.

init(vec) specifies the starting value for the numerical optimization; the default is the

zero vector.

The screen output has the same form as before.

4 Examples

4.1 Patents and R&D

We illustrate the use of twexp by looking at the relationship between the number of

patent applications and R&D expenditure. We use the data of Hall et al. (1986). The

data can be downloaded from the companion website of the textbook Cameron and

Trivedi (2005) at

http://cameron.econ.ucdavis.edu/mmabook/mmaprograms.html,

however, they are not in Stata format. We load them into Stata by typing the following

set of commands:

clear
infile CUSIP ARDSSIC SCISECT LOGK SUMPAT LOGR70 LOGR71 LOGR72 LOGR73 ///
LOGR74 LOGR75 LOGR76 LOGR77 LOGR78 LOGR79 PAT70 PAT71 PAT72 ///
PAT73 PAT74 PAT75 PAT76 PAT77 PAT78 PAT79 ///
using "http://cameron.econ.ucdavis.edu/mmabook/patr7079.asc"
* Use observation number as an identifier, not just CUSIP
gen id = _n
label variable id "id"

reshape long PAT LOGR, i(id) j(year)

The data is a balanced panel on 346 firms and spans the period 1970–1979; note that

Cameron and Trivedi (2005) drop all observations for the period 1970-74 but we do
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not. For each of the firms we have data on the number of patents applied to (PAT)

in each year (and were eventually granted) as well as the log of the amount (in 1972

U. S. dollars) spent on R&D during each year (LOGR). A summary of these data is as

follows:

Variable Obs Mean Std. Dev. Min Max

PAT 3,460 36.28439 74.46563 0 608
LOGR 3,460 1.229807 1.970524 -3.84868 7.06524

It is well established that it is important to control for firm-specific heterogeneity

by the inclusion of firm fixed effects (Hausman et al. 1984). It also seems important to

include a set of time dummies in the specification. These allow to control for aggregate

shocks that affect all firms, such as the state of the economy and overall technological

progress over time.

Estimating a two-way exponential regression of PAT on LOGR by means of GMM1 is

done by typing

twexp PAT LOGR, indn(id) indm(year) model(GMM1)

and yields the following output.

Number of obs = 3460

PAT Coef. Std. Err. z P>|z| [95% Conf. Interval]

LOGR .4084421 .0457615 8.93 0.000 .3187521 .498133

The estimator GMM2 is computed by changing the model option. For efficiency we let

the optimization start at the point estimated obtained by GMM1. To do so we first

type matrix start = e(b) and next enter

twexp PAT RANDD, indn(id) indm(year) model(GMM2) init(start)

The output for GMM2 is

Number of obs = 3460

PAT Coef. Std. Err. z P>|z| [95% Conf. Interval]

LOGR .3241356 .0635514 5.10 0.000 .1995772 .448694
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4.2 International trade

We use the model and data of Santos Silva and Tenreyro (2006) to illustrate the use of

twgravity. The data set can be downloaded from

http://personal.lse.ac.uk/tenreyro/lgw.html.

The data is a cross-section on bilateral trade flows between 136 countries. The outcome

variable is bilateral trade, measured in 1, 000 U. S. dollars (trade). The regressors are

all measures of distances between the importing and exporting country. They are (the

logarithm of) geographical distance (ldist) and a set of dummies that aim to capture

other factors of relatedness. These dummies indicate whether or not countries i and j

share a common border (border), speak the same language (comlang), have a colonial

history (colony), and take part in a common free-trade agreement (comfrt wto). For

each observation the variables s1 im and s2 ex identify the importer and exporter,

respectively.

Variable Obs Mean Std. Dev. Min Max

trade 18,360 172129.5 1829058 0 1.01e+08
ldist 18,360 8.785508 .7416775 4.876723 9.898691

border 18,360 .0196078 .1386522 0 1
comlang 18,360 .209695 .407102 0 1
colony 18,360 .1704793 .3760636 0 1

comfrt_wto 18,360 .0250545 .1562948 0 1

Estimating this model by GMM1 is done by typing

twgravity trade ldist border comlang colony comfrt wto, indn(s2 ex)

indm(s1 im) model(GMM1)

and completes in .81 seconds (using Stata/MP 15.1 on a MacBook 1.4HGz Intel Core

i7 with 16GB RAM). The following output is reported.

Number of obs = 18360

trade Coef. Std. Err. z P>|z| [95% Conf. Interval]

ldist -.8165761 .0629112 -12.97 0.000 - .9398820 -.6932702
border .4873677 .1361165 3.58 0.000 .2205795 .7541561

comlang .2594789 .1300016 2.00 0.045 .0046756 .5142818
colony .1648687 .1461561 1.13 0.256 - .1215973 .4513347

comfrt_wto .3064196 .1250841 2.45 0.014 .0612548 .5515846
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Changing the estimator used to GMM2 is done by typing

twgravity trade ldist border comlang colony comfrt wto, indn(s2 ex)

indm(s1 im) model(GMM2)

which terminates after 1.85 seconds with the following output.

Number of obs = 18360

trade Coef. Std. Err. z P>|z| [95% Conf. Interval]

ldist -.7509313 .0567805 -13.23 0.000 -.8622191 -.6396436
border .1490604 .0771748 1.93 0.053 -.0021994 .3003202

comlang .4909294 .0929732 5.28 0.000 .3087052 .6731536
colony .2128996 .1212684 1.76 0.079 -.0247821 .4505813

comfrt_wto .3298556 .1249293 2.64 0.008 .0849987 .5747126

These results correspond to those reported in Table 5 of Jochmans (2017). To appreciate

the computational speed, estimation by PMLE takes just under 16 seconds when using

poisson with dummies, 3.87 second when using poi2hdfe, and 1.65 seconds when using

ppmlhdfe.

5 Simulations

We use simulated data to further illustrate twgravity. The simulation design has two

binary regressors. They are independent and take on the value one with probability

.05 and .50, respectively. This makes the first regressor sparse. The coefficient on each

regressor is set to unity. All fixed effects are set to zero and errors are drawn from a

log-normal distribution such that their logs follow a standard-normal distribution. The

regressors are drawn once and held fixed across the 5, 000 Monte Carlo replications.

The errors are redrawn in each replication. The sample size was set to n = 25, yielding

25 × 24 = 600 observations at the dyad level. Simulation results for a variety of other

designs and different sample sizes are reported in Jochmans (2017).

The first table below contains summary statistics for the three point estimators

considered. BGMM11 refers to the GMM1 point estimator of the first coefficient and

BGMM12 refers to the GMM1 point estimator of the second coefficient. This naming

convention is also used for GMM2. BPPML1 and BPPML2 refer to the PMLE point

estimates.
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Variable Obs Mean Std. Dev. Min Max

BGMM11 5,000 .9542519 .3584049 -.2982407 2.925951
BGMM12 5,000 1.002699 .109982 .5822676 1.549646

BGMM21 5,000 .9396433 .3955723 -.3508639 3.290722
BGMM22 5,000 .9997944 .1121814 .5487244 1.508134

BPPML1 5,000 .940787 .3754578 -.3382381 2.783273
BPPML2 5,000 1.002575 .1124283 .5688691 1.547408

GMM1 does best in terms of both bias and standard deviation but all estimators perform

quite well. The average computational effort for GMM1, GMM2, and PMLE (each

starting at a vector of zeros) was .1414 seconds, .1435 seconds, and .1780 seconds,

respectively.

The next table provides corresponding summary statistics for the estimated standard

errors for each estimator.

Variable Obs Mean Std. Dev. Min Max

SEGMM11 5,000 .310138 .0805269 .1471121 .7484761
SEGMM12 5,000 .1115835 .0143905 .0828566 .2427083

SEGMM21 5,000 .3345285 .0903741 .1373527 .8006971
SEGMM22 5,000 .1157641 .0168373 .0827409 .4340205

SEPPML1 5,000 .2538752 .0547559 .1251421 .5346598
SEPPML2 5,000 .1025859 .0128109 .0756624 .2152773

It is of interest to compare the Monte Carlo standard deviation (in the previous table)

to the average standard error (in the current table). The ratio of the latter to the former

is .8654 and 1.0145 for GMM1, .8457 and 1.0319 for GMM2, and .67612 and .9125 for

PMLE. Thus, the standard errors for pseudo-Poisson estimator are quite a bit too low,

on average.

6 Conclusion

We have introduced the Stata routines twexp and twgravity for exponential-regression

models with two-way fixed effects. These estimators are based on Jochmans (2017).

They are fast to compute, even in large data sets, and yield reliable standard errors for

inference.
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8 Appendix

Additional computational details for GMM1

Fix the value of γ and introduce the shorthands eij := e(x>ijγ) and uij := yij/eij . First

consider the pure panel data case. The (symmetrized) moment conditions for GMM1 are

s1(γ) =

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij {uijui′j′ − uij′ui′j} .

Note that
n∑

i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij uijui′j′ =

n∑
i=1

m∑
j=1

xijuij

n∑
i′=1

m∑
j′=1

ui′j′ =

n∑
i=1

m∑
j=1

xij(uiju),

where u :=
∑n

i′=1

∑m
j′=1 ui′j′ is the grand mean of the uij . Likewise,

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij uij′ui′j =

n∑
i=1

m∑
j=1

xij

n∑
i′=1

ui′j

m∑
j′=1

uij′ =

n∑
i=1

m∑
j=1

xij(ui·u·j),

where ui· :=
∑m

j′=1 uij′ and u·j :=
∑m

i′=1 ui′j are the means taken with respect to each of the

two dimensions of the data. Consequently,

s1(γ) =

n∑
i=1

m∑
j=1

xij {uiju− ui·u·j} ,

which is fast to evaluate in any matrix-based language. Expressions for the Jacobian matrix

Q1 and for vij follow in the same manner. All these expressions are used in the implementation

of twexp.

In twgravity self-links are ruled out, i.e., the observations yii,xii are not in the data. In

this case the empirical moments for GMM1 become

s1(γ) =

n∑
i=1

∑
i′ 6=i

∑
j 6=i,i′

∑
j′ 6=i,i′,j

xij {uijui′j′ − uij′ui′j} ;

note the change in the range of the sums. It is convenient to define yii = 0 and xii = 0. Then,

in the same way as before,

n∑
i=1

∑
i′ 6=i

∑
j 6=i,i′

∑
j′ 6=i,i′,j

xijuijui′j′ =

n∑
i=1

n∑
j=1

xijuij(u− u·i − uj· + uji)
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and
n∑

i=1

∑
i′ 6=i

∑
j 6=i,i′

∑
j′ 6=i,i′,j

xijui′juij′ =

n∑
i=1

n∑
j=1

xij(ui·u·j − ǔij)

where ǔij :=
∑n

i′=1 uii′ui′j . Consequently, in this case we have

s1(γ) =

n∑
i=1

m∑
j=1

xij {uiju− ui·u·j} −
n∑

i=1

m∑
j=1

xij{uij(u·i + uj· − uji)− ǔij}

The additional term on the right-hand side compared to the corresponding expression above

is a correction term for the absence of self links in the data. The Jacobian matrix and the

covariance matrix of the moment conditions can again be obtained in a similar manner.

Additional computational details for GMM2

Fix the value of γ and introduce the shorthand eij := e(x>ijγ) First consider the pure panel

data case. The (symmetrized) moment conditions for GMM2 are

s2(γ) =

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

xij {yijyi′j′ei′jeij′ − yij′yi′jeijei′j′} .

Here, defining the n×m matrices (Y )ij := yij and (E)ij := eij we can compactly write

xijyij

n∑
i′=1

n∑
j′=1

ϕij′yi′j′ϕi′j = xijyij(EY
>E)ij ,

xijeij

n∑
i′=1

n∑
j′=1

yij′ei′j′yi′j = xijeij(Y E
>Y )ij ;

note that the terms on the right-hand side here are quadratic forms in E and Y . Hence,

s2(γ) =

n∑
i=1

m∑
j=1

xij

{
yij (EY >E)ij − eij(Y E

>Y )ij
}
,

which is again immediate to compute in any matrix-based language. When self-links are ruled

out—again defining yii = 0, xii = 0, and now also setting eii = 0, no further modification is

needed for GMM2.
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